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Self-consistent calculations of the electronic structure, including screened exchange, are carried out for 
Li, Be, Na, Mg, Al, K, and Ca. Results are presented as orthogonalized plane wave (OPW) form factors. 
They agree well with values of these form factors estimated from splittings at symmetry points in the Brillouin 
zones obtained from existing band calculations. For calcium, the form factors are used to compute the Fermi 
surface in detail. The computed form-factor curves may be approximated within a few hundredths of a ryd-
berg by the Fourier transform of a simple one-parameter potential in which the core is replaced by a delta-
function repulsive potential. There are no apparent trends in the strength of this repulsion with valence nor 
with atomic number. The familiar dropping of the even state at the zone face in the alkali metals as the 
atomic number increases is to be associated with the larger atomic volume rather than with changes in the 
core potential. An attempt to treat copper in a similar manner indicated that the form-factor approach is 
quite inadequate for the noble metals. 

I. INTRODUCTION 

IN an earlier communication,1 which we shall call I, 
it was shown that the Fermi surface of a polyvalent 

metal and many of its electronic properties are obtain
able directly from an "orthogonalized plane wave 
(OPW) form factor." This single function of wave 
number (for wave numbers between zero and twice 
the Fermi wave number) depends only upon the atomic 
cell volume and the individual ion potential. 

If the crystal potential could be written as a sum of 
simple potentials centered at the ions, the OPW form 
factor would correspond to the Fourier transform of a 
single potential. Matrix elements of the Hamiltonian 
between plane-wave electronic states would then be 
given by the product of a structure factor, depending 
only upon the arrangement of the ions and the difference 
in wave number between initial and final states, and 
the Fourier transform of a single ionic potential cor
responding to that difference in wave number. In the 
real crystal, the corresponding separation can be made. 
The same structure factor enters, and a single potential-
dependent factor can be defined if we restrict the 
matrix elements to be between two states at the Fermi 
surface. We call this factor the OPW form factor. 

Because this form factor, which represents a most 
important aspect of the electronic structure, is in
dependent of the crystal structure it is of interest to 
compare the curves for a number of metals in the 
periodic table in order to see any trends in the electronic 
structure. A series such as sodium, magnesium, 
aluminum can readily be compared in this way though 
each has a different crystal structure. It was the hope 
of seeing trends in electronic structure with atomic 
number or with valence, as well as the desire to obtain 
the curves which can be the basis of an understanding 
of the electronic properties of the metals in question, 
which motivated the present study. To this end, the 
OPW form factors were obtained for all nontransition 
elements through zinc. The curve for copper was 

*-W. A. Harrison, Phys. Rev. 129, 2503 (1963); hereafter 
referred to as I. 

included in the interest of comparison, but was not 
regarded as useful since approximations in the approach 
are not appropriate for a noble metal. The curve for 
zinc was available from previous work,2 which we will 
call II. 

In Sec. II we define the terms which enter the 
calculation and indicate the approximations made; a 
detailed outline of the procedure used is given in 
Appendix A. In Sec. I l l we summarize the results for 
the various metals and compare with existing calcu
lations. In Sec. IV we consider a simple model which 
describes the results quite well and look for trends with 
valence and atomic number. A detailed study of the 
Fermi surface of calcium is given in Appendix B. 

II. CALCULATION OF THE OPW FORM FACTORS 

The matrix elements which enter the calculation of 
many electronic properties are simply the matrix 
elements of the total Hamiltonian between orthogonal
ized plane waves. A method was developed in I and II 
for computing these matrix elements, as well as for 
computing properties in terms of them. Because 
orthogonalized waves are not orthogonal to each other, 
this matrix element will depend upon the zero of 
energy; in I we selected the zero of energy to optimize 
the convergence of the perturbation treatment. 

We assume that the cores in the metal are the same 
as in the free ion, and include in the one-particle 
Hamiltonian, the kinetic energy, a sum of free-ion 
potentials (one at each ion site), exchange between 
conduction and core electrons, and the self-consistent 
field of the conduction electrons. Orthogonality co
efficients are obtained using the core wave functions 
from a Hartree-Fock treatment of the ion. 

In I we wrote the matrix elements as matrix elements 
between plane waves of a pseudopotential W(k) and 
separated them into structure-dependent and potential-
dependent factors: 

(k+q\W(k)\k)=S(q)(k+q\w(k)\k). (1) 
2 W. A. Harrison, Phys. Rev. 129, 2512 (1963); hereafter 

referred to as II. 
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Here the wave numbers k and k + q lie on the Fermi 
sphere. The structure factor, 5(q) , is given by 

S ( q ) = ( l / t f ) E i *-*• ' ' , (2) 

where the sum is over all N of the ion positions ry. The 
OPW form factor, (k+q |w(&) |k ) , is a simple function 
of q for Q<g<2&F and is evaluated from the Hartree-
Fock field and core wave functions of the ion. 

The calculation of these form factors has been 
described earlier.1,2 Here we will simply describe the 
modifications which we have made for the current 
calculation; these greatly simplify the numerical work. 
Since the calculations remain rather complex in detail, 
we give in Appendix A the step-by-step procedure 
which was used. 

In the course of evaluating the form factor, matrix 
elements of the core potential, including exchange, 
between plane waves and core wave functions must 
be evaluated. These can be simplified by noting that 
the core wave functions, \ph are solutions of the 
Schrodinger equation containing this same ionic 
potential, vop', 

T\l/t+v0p^t=€t\l/tl 

where et is the customary Hartree-Fock parameter. I t 
is then readily shown that 

( ^ o p
, | k ) = ( e , - ^ 2 / 2 w ) < / | k ) , 

so these matrix elements are given directly in terms of 
the orthogonality coefficients, (t\k). 

We also require matrix elements of the core potential 
between plane waves. The core potential includes the 
self-consistent field of the core which may or may not 
be tabulated in the literature. If not, the Fourier 
transform of the charge density is readily calculated, 
from which the Fourier transform of the potential is 
directly obtained using Poisson's equation. 

v0p also includes exchange between conduction and 
core electrons. In our earlier treatment of zinc2,3 this 
exchange entered as an /-dependent potential in the 
Hartree-Fock treatment used by Piper.4 We would 
expect to make little error by using instead the approxi
mate treatment of exchange given by Slater5; that is, 
free-electron exchange, and we use that procedure here. 
In this approximation the exchange potential is given 
by — 3e2(3po/87r)*, where po is the local density of 
(core) electrons. This, again, may be computed from 
the tabulated core wave functions, and v0p becomes a 
simple potential. 

We find the inclusion of exchange in the calculation 
reasonably important. In Fig. 1 is shown the OPW 
form factor computed for aluminum with exchange 
included as described above. In addition, the form 
factor is shown computed without exchange by using 
the Hartree parameters, rather than the Hartree-Fock 

^ - . 2 

INCLUDES EXCHANGE 

NO EXCHANGE 

PARTIAL INCLUSION 

FIG. 1. The OPW 
form factor for alu
minum calculated 
from the Hartree-
Fock field and in
cluding exchange; 
calculated using the 
Hartree parameters, 
but including ex
change between con
duction and core 
electrons; and calcu
lated from the Har-
t r e e p a r a m e t e r s 
omitting exchange 
between conduction 
and core electrons. 

» W. A. Harrison, Phys. Rev. 126, 497 (1962). 
4 W. W. Piper, Phys. Rev. 123, 1281 (1961). 
«J. C. Slater, Phys. Rev. 81, 385 (1951). 

parameters, and by dropping the exchange in v0p. The 
curves are rather close, but differ by as much as 0 . 0 9 E F 
in places. This is considerably larger than the other 
errors we expect to make and, therefore, the inclusion 
of exchange is appropriate. 

Also shown in Fig. 1 is the form factor obtained 
including exchange in vop' but using the Hartree 
parameters in the computation of (/|vop'|k). This is 
in slightly greater error and suggests that if we treat 
a metal for which only the Hartree calculation had 
been done for the ion, it is preferable to omit exchange 
altogether. This suggestion has been made earlier by 
Heine.6 

Finally, we need the self-consistent field arising 
from the conduction-electron charge distribution. The 
two interesting contributions to this charge distribution 
are the deviations from uniform distribution arising 
from orthogonalizing the plane waves to the core wave 
functions and those arising from the screening of the 
core and exchange potentials. 

The effect of orthogonalizing all conduction band 
waves to the core is to localize a charge of 

(i/W)E.*<*,E«<k|*><'|k> 
at each core. For the interpolation we used in the 
treatment of zinc2 the terms in this sum were in
dependent of k, and we make that approximation here. 
We find the number of charges, dZ, localized at each 
core to be given by 5 Z = Z £ t (k11)(t | k) , where Z is the 
valence (the column number in the periodic table). In 
our treatment of zinc we concentrated this charge 
at a point at the nucleus; here we improve 
on this by distributing it as the core charge is 
distributed. The fact that this improvement only very 
slightly modifies our result supports the contention 
that it is unnecessary to determine the distribution 
more accurately. 

The self-consistent shift of the conduction-band 
charge density also depends upon the individual be
havior of all of the electrons. In I I we obtained the 
shift by integrating over the conduction band. Cohen 
and Phillips7 have suggested an approximate treatment 

6 V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957). 
7 M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961). 
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where the appropriate matrix elements are simply 
divided by the Hartree dielectric function corresponding 
to the wave number in question. We wish to avoid the 
determination of matrix elements for states below the 
Fermi surface, but find the Cohen-Phillips approach 
inadequate in that it disregards an inherent non-
Hermiticity in the matrix elements which arises from 

the nonorthogonality of the orthogonalized plane waves. 
As a consequence it would lead to a limiting value for 
small wave numbers of — f2^(1+22* (k 10(* I k)), where
as we showed in I I that the correct value is simply 
— 2EF/3 ; thus, the Cohen-Phillips approximation leads 
to errors of the order of 10% in this region. In I we 
wrote the screening field as 

4ire2 r(k+q\w(k)°\k) <k-q|ze>(&)°|k>* 

q2£l K<kFL Tk—Tk+q Tk—Tk~q 

The sums over the first and second terms in square 
brackets are identical (a fact which we previously 
overlooked for the general case), so the square brackets 
may be contracted to twice the first term. We then re
place <k+q|w(A)o|k> by (k+q\w(k)«\k)+UTk-Tk+q) 
X Z)t(k+<iM)(*|k), a form suggested by the form of 
the non-Hermiticity of the matrix elements. [JSfote 
added in proof. Current machine calculations being 
made of the energy-wave number characteristic for 
aluminum (to be published) have given incidentally a 
check on the accuracy of this procedure, and have 
indicated that it is good to a few thousandths of a 
rydberg over most of the wave number range.] We then 
neglect the dependence of the matrix elements upon k. 
Thus, we find the screening field to be given by two 
terms; the first is (l — eq)/eq times the unscreened 
matrix element; the second is given by 

W Z £ , ( k + q | 0 ^ | k ) / C ^ 0 6 ( g ) ] . 

This second term, which is absent in the Cohen-Phillips 
treatment, leads to the correct limiting behavior at 
long wavelengths. 

These modifications were incorporated into the 
method developed earlier1-3 to obtain the procedure 
which is explicitly described in Appendix A. 

1 4rre2 r 1 

1- E 
g20 KkpLTk-: 

T]c-\-q Tk— Tjc—q-:])• (3) 

ends in copper. We carried out the analysis for copper, 
treating the 3d bands as core states though these 
states actually differ significantly from the correspond
ing ion states. Finally, we list the results for zinc which 
were given earlier2; in zinc, the core is again rather 
small. 

In each case we computed the form factors for the 
metal at the observed density. We obtained values 
for q/kp equal to 0, 0.5, 1.0, 1.5, and 2.0. These are 
given in Table I and plotted in Fig. 2. Before consider
ing trends in the OPW form factors, we shall discuss 
the calculations for the individual metals and compare 
the results with existing calculations where possible. 

The comparison with existing calculations is not 
direct. We have obtained matrix elements of the 
Hamiltonian between two states on the Fermi surface. 
If the free-electron (or single-OPW) surface intersects 
a zone face, the OPW form factor for q equal to the 
corresponding lattice wave number (27r times the 
reciprocal lattice vector) equals half the band gap for 
that zone face, evaluated at this intersection. This 
neglects modifications of the band gap from inter
action with neighboring bands; i.e., it assumes that 
the wave function can be approximated by the sum of 
only two plane waves. Errors associated with this 

III. COMPUTATION AND COMPARISON WITH 
BAND CALCULATIONS 

The computation was carried out in detail for all 
metals through atomic number 20 (Ca). In all of these 
metals the core is small, and the approximation that it 
is the same as in the ion should be quite good. 21 is 
scandium and begins the first transitions series which 

TABLE I. OPW form factors in Ry. 

q/kF 0 0.5 1 1.5 

Li 
Be 
Na 
Mg 
Al 
K 
Ca 
Cu 
Zn 

-0.237 
-0.703 
-0.154 
-0.353 
-0.573 
-0.100 
-0.231 
-0.345 
-0.472 

-0.207 
-0.500 
-0.145 
-0.301 
-0.427 
-0.104 
-0.196 
-0.423 
-0.329 

-0.137 
-0.145 
-0.110 
-0.165 
-0.183 
-0.087 
-0.119 
-0.336 
-0.176 

-0.046 
+0.124 
-0.051 
-0.009 
+0.019 
-0.052 
-0.036 
-0.164 
-0.036 

+0.064 
+0.299 
-0.001 
+0.095 
+0.113 
-0.014 
+0.039 
-0.102 
+0.074 

FIG. 2. OPW form 
factors computed for 
a series of metals. 
The key appears to 
the lower right; 
2t(k\t)(t\k) gives 
a measure of the 
orthogonality co
efficients, or the core 
size; (47rre

3/3)"~1 is 
the electron density. 
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TABLE II. Comparison with band calculations. All energies in Ry. 

Li 
Be 

Na 
Mg 

Al 

K 
Ca 

U 

[110" 
TOO 
101 

"002" 
'110" 
TOO" 
"002" 
"10T 
T i r 
"200"̂  
"110" 
"111] 
=200= 

<k+q|W(«|k> 
0.064 
0.172 
0.229 
0.253 

-0.001 
0.023 
0.046 
0.069 
0.026 
0.071 

-0.014 
0.003 
0.039 

0.030 
0.055 

Estimate from symmetry-point splitting 

0.101 (N) 
0.093 (K) 
0.254 (H,K) 
0.247 (r) 
0.008 (N) 
0.027 (K) 
0.052 (r) 
0.071 (H) 

, 0.026 (W) 
, 0.048 (W) 
-0.016 (N) 

0.076 (P) 
0.155 (M) 

0.018 (P) 
0.056 (H) 

- , 0.024 (K) 
- ,0 .042 (K) 
+ 0.020 (P) 

0.052 (H) 

0.026 (H) 
0.044 (M) 

- , 0 . 0 1 5 (L) 
0.062, 0.038 (X) 

+ 0.039 (H) 

Reference 

10 
12 
12 
12 
10 
15 
15 
15 

17, 18 
17, 18 

10 

approximation are expected to be small compared to 
uncertainties in the potential in most cases. 

The band calculations give us energies, or band gaps, 
at symmetry points. Again neglecting the interaction 
with neighboring bands, we may deduce splittings 
associated with the zone faces which intersect this 
point, but now evaluated at the symmetry point rather 
than at the Fermi surface. We have shown in II 
(Fig. 1) that these matrix elements may vary signifi
cantly over the zone face, so some error is introduced 
in the comparison which will, however, be small if the 
two points are close. In spite of these difficulties, it is 
desirable to estimate the OPW form factors from 
previous band calculations as a check on our calcula
tions. In the case of calcium, for which there do not 
exist any previous band calculations, we will compute 
the Fermi surface in some detail from our OPW form 
factors. 

1. Lithium 

The Hartree-Fock wave functions for lithium were 
taken from Holoien8; the Hartree-Fock parameters 
were taken from Fock and Petrashen.9 For both 
lithium and beryllium, analytic approximations to the 
wave functions were given which greatly simplified 
the numerical work. In addition, the presence of only 
the Is state in the core reduced the computations 
required. 

Only very rough comparison is possible with previous 
band calculations in the monovalent metals. The Fermi 
surface does not intersect any zone face, so the splittings 
corresponding to OPW form factors have not been 
obtained. However, the Fermi surface approaches rather 
close to a (110) zone face near the point N. Therefore, 
rough comparison may be made between computed 
splittings at N and the OPW form factor corresponding 
to q=2kF- We compare with "Fourier transforms of 
the effective potential" computed by Ham10 from the 
calculated band splittings at N, P, and H. The com
parison appears in Table II. The differences between 
values given by Ham from different symmetry points 

8 E. Holoien, Proc. Phys. Soc. (London) A68, 297 (1955). 
9 V. Fock and M. J. Petrashen, Phy. Z. Sowjet. 8, 547 (1935). 
10 F. S. Ham, Phys. Rev. 128, 2524 (1962). 

shows that there are sizable variations of the matrix 
elements over the zone face, as he has indicated, and 
that comparisons of our values with the symmetry-point 
splittings are not very reliable. It also emphasizes the 
importance, for computing properties, of obtaining 
matrix elements between states on the Fermi surface 
as we have done rather than at symmetry points. In 
the alkalis, the comparison at N is more significant 
than the others, but still corresponds to a transform 
with wave number differing by 10% from that in our 
calculation. We regard the agreement as suitable in 
view of this difference. 

2. Beryllium 

Hartree-Fock wave functions were taken from 
Holoien,8 but since published Hartree-Fock parameters 
were not found for Be"*"1", the computation was carried 
through without exchange. All other metals have been 
treated including exchange. Hartree parameters were 
taken from Hartree and Hartree.11 

Comparison is made with the band calculation of 
Herring and Hill.12 Form factors were obtained from 
our calculation for beryllium and for the other poly
valent metals by linear extrapolation between q= 1.5&F 
and q=2kF. The comparison appears in Table II. 
Values for the (100) form factor were obtainable from 
both K and M; K lies nearer the Fermi surface and is 
therefore listed first. Only two band energies were given 
at H, so it was necessary to take the (100) form factor 
from K in order to deduce the (110) value. The rather 
large discrepancies are presumably due to the influence 
of higher bands; a few-OPW treatment of the band 
structure is rather inadequate when the form factors 
are as large as they are in beryllium. 

3. Sodium 

Hartree-Fock wave functions and parameters were 
obtained from Hartree and Hartree.13 In sodium, and 

11 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 
A149, 210 (1935). 

12 C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940). 
13 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 

A193, 299 (1948). 
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in the remaining metals, all integrations were performed 
numerically by hand. In the integrations the region 
was divided into twenty to thirty intervals. Approxi
mately one day of computation was required for sodium. 
As in the case of lithium, comparison is made with the 
splittings found by Ham.10 

4. Magnesium 

Hartree—Fock wave functions and parameters were 
obtained from Yost.14 We compare our OPW form 
factors with values obtained from the band energies at 
symmetry points computed by Falicov.15 Values for 
the (100) form factor are listed in order of proximity 
to the Fermi surface of the symmetry point in question. 
Agreement is remarkable; it should be noted, however, 
that the band energies at H do not differ from the 
Fermi energy much more than those at K, so a com
parison with the (100) value determined at H is about 
as appropriate as with the value from K. We might 
also compare the discrepancies with the errors inherent 
in band calculations, which Falicov15 has attempted to 
reduce to 0.03 Ry. 

5. Aluminum 

Calculations were based on the Hartree-Fock treat
ment of the Al3+ ion by Froese.16 We compare with the 
splittings computed both by Heine17 and Segall.18 

Heine's values at K have not been included because 
of an apparent numerical error in the third-band 
energy.18,19 The agreement with the values at W, which 
lies quite close to the Fermi surface, is quite good, and 
comparable to the discrepancies between the two band 
calculations. We note that, even in aluminum, estimates 
based upon the different symmetry points differ by 
about 0.01 Ry. 

6. Potassium 

The Hartree-Fock calculations for K+ by Hartree 
and Hartree20 were used, and again comparison is 
made with estimates from the band calculation by 
Ham.10 

7. Calcium 

Calculations were based upon the Hartree-Fock 
treatment of Ca** by Hartree and Hartree.21 There 
has apparently not been a previous band calculation 
for calcium, and our examination of band energies at 
symmetry points for the other metals suggests that a 
tabulation of the energies at symmetry points estimated 

14 W. J. Yost, Phys. Rev. 58, 557 (1940). 
15 L. M. Falicov, Phil. Trans. Roy. Soc. A255, 55 (1962). 
16 C. Froese, Proc. Cambridge Phil. Soc. 53, 210 (1957). 
17 V. Heine, Proc. Roy. Soc. (London) A240, 361 (1957). 
18 B. Segall, Phys. Rev. 124, 1797 (1961). 
19 W. A. Harrison, Phys. Rev. 118, 1182 (1960). 
20 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 

A166, 450 (1938). 
21 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 

A164, 167 (1938). 

from the form factors would not be particularly reliable. 
It is of some interest, however, to determine the Fermi 
surface of calcium. This we can do from the form-
factor curve for calcium. The calculation is given in 
Appendix B, along with preliminary comparison with 
experiment. 

8. Copper 

Copper was treated only for comparison with the 
other metals. The assumption that the core states are 
the 'same as in the atom is completely inadequate for 
copper, where the conduction and d bands are intimately 
mixed. Further, the entire perturbation treatment is 
questionable when the bands are as seriously deformed 
as in copper. However, we may proceed just as in the 
other metals to obtain a form factor. We have used 
the Hartree-Fock treatment of the Cu+ ion given by 
Piper.4 

As in the alkali metals we compare the form factor 
for q=2kF to the splitting at the center of the nearest 
zone face, in this case at the point L. We find a negative 
value, implying that the even state lies lower, whereas 
the band calculation of Segall22 gives the odd state 
lower. This confirms our misgivings at the start and, in 
fact, the comparison of copper with the other metals 
does not seem very informative. 

9. Zinc 

The form-factor curve was taken directly from our 
earlier treatment,2 which was almost identical to that 
described here. There was no previous band calculation 
to compare with, but a comparison3 with the observed 
Fermi surface suggested agreement comparable to the 
agreement we find with the other metals. 

IV. A SIMPLE MODEL AND TRENDS IN THE 
PERIODIC TABLE 

We find that it is possible to account remarkably 
well for the OPW form factors we have computed in 
terms of a simple model with a single adjustable 
parameter. We note that the main attractive contri
bution to the effective potential comes from the long-
range Coulomb field of the net ion charge, Ze. The 
remaining contributions (except for screening) are 
restricted to the core and may be approximated by a 
delta function. Of these localized terms, the largest 
arises from the orthogonalization terms so the delta 
function is positive. We screen these with a Hartree 
dielectric function for free electrons of the density in 
question. Thus, we approximate the OPW form factor 
by 

v(q) = (-4irZ^+j8)/Q0efa) . (4) 

/? is the strength of the delta-function repulsion. 
Clearly, because of the operator nature of the 

repulsive term, fi may depend upon the Fermi wave 
number and, therefore, upon the atomic volume. We 

22 B. Segall, Phys. Rev. 125, 109 (1962). 
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rs = 2.07 FIG. 3. The OPW 
form factor for alu-

• q/kF minum calculated at 
the observed density 
(r8=2.07) and in an 
expanded crystal 

(r.=2.76). 

Dashed lines are the 
corresponding curves 
computed from the 
model potential with 
0=36.6 Ry-a.u.3. 

will first test the validity of the wave-number depend
ence implied by Eq. (4) for the observed atomic volume. 
We will then examine the dependence of /3 on the 
atomic volume. 

In Fig. 3 we have shown again the computed form-
factor curve for aluminum (ra=2.07). We also show 
Eq. (4) plotted with /3 adjusted to fit at q equal to 2kF. 
The fit is extremely good (within about 0.03 Ry) over 
the entire wave number range. Similar fits to the other 
metals have been made. The corresponding values of 
(3 are listed in Table I I I . In all cases, except copper, 
the agreement with our computed curves is comparable. 

I t should be pointed out that for treating a band 
structure per se, the increased accuracy of the full 
calculation is rather important. However, for treating 
electronic properties the approximate form should be 
quite adequate. I t should also be pointed out that, as 
we found in zinc,2 the breakdown of the simple-potential 
approximation gives variations in matrix elements of 
about a tenth of a rydberg when we consider interaction 
of states which do not both lie on the Fermi surface. 
This shortcoming was also apparent in variations in 
form factors estimated from the splitting at various 
symmetry points in Table I I . Thus, it is not reasonable 
to extend the use of this potential to the atomic 
properties. 

The most striking aspect of the values for (3 listed in 
Table I I I is the lack of any trend with atomic number 
or with valence. Even in the alkali metals there is no 
trend, and the familiar lowering of the s state at the 
zone face with atomic number, which corresponds to 
the very apparent dropping of the form factor curves 
in Fig. 2, is due to the increase in atomic volume with 
atomic number rather than to changes in the effective 
core potential. This lack of trend in the 0 values 
manifests itself in the striking similarity of all of the 
form-factor curves of Fig. 2 for the polyvalent metals, 

TABLE III . The strength, (3, of the repulsive pseudopotential 
in units of rydbergs—atomic units of volume. 

Al, 36.6 
Li, 29.1 

Na, 27.0 
K, 31.5 

Cu, 2.2 

Be, 30.8 
Mg, 41.6 
Ca, 50.6 
Zn, 26.5 

where there does not exist this marked dependence of 
atomic volume on atomic number. 

We now consider the variation of fi with atomic 
volume for a given metal. In Fig. 3 we show the OPW 
form factor for aluminum with an expanded volume 
corresponding to an increase in rs by a factor of f. 
(The form factor in this case was computed for q/kF = 0, 
| , | , and 2.) We also show Eq. (4) plotted for the 
increased volume with the value of /3 chosen for the 
normal volume. Clearly, the same value of (3 accounts 
rather well for both densities, though a 14% decrease 
in 0 would be required to make the fit exact at 2 £ F . 
Thus, Eq. (4) may be used, at least for aluminum, 
with a single value of /3 over rather large variations in 
atomic volume and very little error is introduced. 

We have not made the corresponding comparison for 
the other metals, but we can find an indication by 
considering Ham's10 band calculations on the alkali 
metals. As we indicated above, we may obtain an 
estimate of the OPW form factor for q=2kF from the 
splitting at N (between the states iVi and Ni). Ham10 

has listed these splittings as a function of atomic 
volume for the alkalis and we may, therefore, make an 
estimate of fi as a function of atomic volume. This 
estimated j8 drops as the atomic volume drops in all 
cases (in contrast to aluminum), but the size of the 
variations for lithium and sodium are comparable to 
those in aluminum. For potassium, and particularly 
for rubidium and cesium, the drop in 0 is very rapid 
at small volumes. I t seems likely that this drop is 
associated with the depression of the even state by the 
incipient d band, rather than with a real drop in the 
matrix elements derivable from the OPW form factor. 
With increasing atomic number the d band, and the N2 
state in particular, drops. Furthermore, for a given 
element, the d band drops as the atomic volume is de
creased. Strictly speaking, an N^ state cannot interact 
with an Ni state, but their proximity indicates a 
strong interaction between the plane waves from which 
they are derived. Thus, we would say that the band 
gaps at N are not given well by the OPW form factor 
for the alkali metals of high atomic number, but the 
form factors themselves may still be describable by 
Eq. (4) with values of ft comparable to those of the 
light metals and these may not be inordinately sensitive 
to changes in volume. 

The results for the alkalis are consistent with our 
suggestion of a £ which does not vary significantly 
with atomic number or atomic volume, but do not lend 
strong support to the suggestion. Further, these results 
give a warning against too literal an application of 
form factors to the band structures in the heavy 
elements. Equation (4) would indicate that the form 
factors at q = 2kF become less negative in the heavy 
alkali metals as the volume is decreased whereas the 
band gaps apparently become more negative.28 

23 The author is indebted to Dr. F. S. Ham for pointing out to 
him this discrepancy in the alkali metals. 
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V. CONCLUSIONS 

We have presented a rather simple scheme for 
computing the OPW form factors for metals from the 
Hartree-Fock calculations on the corresponding ion 
and applied this to a series of metals of low atomic 
number. The results are sufficiently similar to that 
obtained earlier2 for zinc, that we expect the treatment 
of electronic properties in terms of these curves to be 
quite adequate for all of these metals, as we found it 
to be in zinc. The direct application of the technique 
to copper was quite unsuccessful, and indicates that 
the approach is not applicable to the noble metals. 

The comparison with existing band calculations 
given in Table II was rather informative. There are 
two approximations implicit in relating the OPW form 
factor to the band splittings at symmetry points. First 
is the assumption that the matrix element between any 
two plane waves differing in wave number by q is the 
same as that when both initial and final wave numbers 
lie on the Fermi surface. We found explicitly in zinc2 

that this is not the case, and the errors become more 
serious as we move further from the Fermi surface. 
Second, we neglect the effect of neighboring bands: 
These give shifts of the order of the square of the matrix 
element divided by the energy difference from the band 
in question, and are not always negligible. The dis
crepancies we found between our values and estimates 
from the symmetry points were no bigger than the 
differences between values of the same form factor 
obtained from different symmetry points. Furthermore, 
the discrepancies were smallest for the symmetry points 
lying closest to the Fermi surface, and were of the 
order of a hundredth of a rydberg there. Thus, the 
band calculations generally may be regarded as 
confirming our calculations. 

The fact that the discrepancies become small for the 
symmetry points closest to the Fermi surface suggests 
that the main errors in computing symmetry-point 
energies from the OPW form factors comes from the 
wave-number-independent pseudopotential approxi
mation rather than the inclusion of only a few plane 
waves. We may note from Table II that the associated 
errors are larger in the alkali metals than in the poly
valent metals, but not significantly larger. A cursory 
look at the heavier alkalis suggests that neglect of 
interaction with higher bands becomes increasingly 
serious at higher atomic numbers. 

The most striking result of our analysis is the degree 
of success of the simple model for the effective potential 
with a single parameter for each metal: Particularly, 
the fact that the model seems to carry over reasonably 
well to changes in volume. This means that we may 
directly treat alloys in a simple manner, including the 
distortions of the lattice due to alloying if they are 
known: Computations of resistivity or of band struc
ture become very direct. 

Another striking finding is the apparent lack of 

trends in the repulsive term in the potential which 
arises from the ion core. I t was natural to expect a 
uniform lowering of s-like states in comparison to 
^-like states with increase of atomic number, since 
this was known to occur in the alkali metal series. We 
find that that tendency does not occur in the polyvalent 
metals, and that in the alkalis it is largely due to the 
increase in atomic volume with atomic number: In the 
heavier alkali metals there appears to be an additional 
depression of the s state from higher bands which drop 
as the atomic number increases. 

I t is interesting to indicate the degree of reliability 
of the delta-function strengths, fi, given in Table III. 
We regard our OPW form-factor curves as reliable to 
one or two hundredths of a rydberg; similarly, the 
values obtained from the effective potential are reliable 
to this order. Since the atomic volumes are of the order 
of a hundred a.u.,3 and the dielectric function of the 
order of one when q is near 2kF, we see from Eq. (4) 
that the 0 values are reliable to the order of 5. In 
view of the sizable variations from element to element, 
this is sufficiently accurate to allow very informative 
studies of the properties of the corresponding alloys. 
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APPENDIX A: PROCEDURE FOR CALCULATION 
OF THE OPW FORM FACTORS 

The right-hand side of each numbered equation 
below is a mathematical operation which is carried out. 
Values obtained for aluminum are given in square 
brackets at each step. All energies are in rydbergs, 
other parameters are in atomic units. All integrals over 
r run from zero to infinity. 

For the observed volume, Oo, we compute 

47r/Qo[0.1128], 

radius of the equivalent sphere, r0[2.985], and free-
electron Fermi wave number, £^[0.9273]. From a 
Hartree-Fock treatment of the ion we obtain the 
normalized radial wave functions, Pni(r), and parame
ters, €ni,nl. 

MTA1 '2 r 

^'^)==W \r^Fr)F^r)d^ (A1) 

[Is, 0.032; 2s, -0.234; 2p, 0.0816]. 

Z,<k+q|*><*|k> 

= Z* (2Z+l)iMcos2©) £ n (k\rf,nly; (A2) 

[0.0560+0.0200 cos2@]. 

= Ez (2H-l)iMcOS20) En (k\*nl)2 

X(-\enl,nl\-kF*); (A3) 
[-0.844-0.196 cos20]. 
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We select a set of q values for which we will compute 
the form factor. All computations will be made for 
these q's and for g = 0 if the corresponding value is not 
infinite. 

[g /*F=0 ,0 .5 , 1 , 1 .5 ,2 ] , 

cos2@=l-g 2 /2yb 2 , (A4) 

[1,0.875,0.5, - 0 .125 , - 1 ] . 

Expressions (A2) and (A3) above are evaluated for the 
g's in question: 

[0.0760, 0.0735, 0.0660, 0.0535, 0.0360; 
-1 .040 , -1 .016 , -0 .942 , -0 .820 , - 0 . 6 4 8 ] . 

We define Z7(r) = 47rf2po(r), where p0 is the core-
electron density. If U(r) is not tabulated, we compute 

ff(r) = Ei .»2(2H-l )P B j *(r ) . (A5) 

The Fourier transform of the electron density is 
proportional to 

» /̂(v) U(r)dr; (A6) 

[10, 9.90, 9.52, 8.95, 8.24]. 

Note n(0) = J^n>i2(2l+l) is equal to the number of 
core electrons. 

The Fourier transform of the ion potential is 
proportional to 

*,<» = (WVo)(2/q%-Z-n(0)+n(q)-], (A7) 

[ - , - 3 . 2 5 3 , - 0 . 9 1 3 , -0 .472 , - 0 . 3 1 2 ] , 

where Z is the valence [ 3 ] . For # = 0 the integral is 
restricted to the equivalent sphere; 

ô (1): - ( - Y z r 0
2 + - fr2Udr) . (A8) 

The Fourier transform of the exchange potential is 
proportional to 

1.2707 4TT 
(2 ) : 7-smqr[rU(r)J>dr; (A9) 

q ft0 

[ -0 .377, -0 .343 , -0 .262 , -0 .172 , - 0 . 1 0 5 ] . 

The Fourier transform of the potential arising from 
orthogonalization is proportional to 

V 3 ) = ^ - Z < k | / ) < / | k > ; (A10) 

% q2 n(0) t 

[ - , -0 .237 , -0 .057 , -0 .024, - 0 . 0 1 2 ] . 

(k\u\k) = v0w+vo™-vow; (All) 

[ - 2 . 4 7 3 ] . 
<k|«|k> 

(4) 

l -£e<k |0TO * 
[ -0 .203 , -0 .197, -0 .177 , 

£ < k + q | 0 < ' | k > ; (A12) 

0.143, - 0 . 0 9 6 ] . 

That contribution to the screening field which arises 
directly from the non-Hermiticity of the pseudo-
potential is given by 

4TT2Z 

fto q2 * 

[ - , 0.231, 0.052, 0.019, 0.007], 

(A13) 

divided by the Hartree dielectric function for free 
electrons, e(q). 

e(q) = 1 + 
1 1 f l 

2wkFrj2 I 2rj 
-In 

1 + 7? 

1-V 

+ 1 (A14) 

[ - , 6.375, 2.252, 1.478, 1.172]; 

where rj = q/2kF. The dielectric function for other metals 
may be computed from that for aluminum according to 

e(q/kF) = l + [ e ( < z / ^ ) A i - 1](0.9273/£F). 

The OPW form factor is 

<k+q|w(ft)|k> 
= [ ^ ( 1 ) + ^ ( 2 ) + ^ ( 3 ) + ^ ( 4 ) + ^ ( 5 ) ~ ^ ( 0 ) ] / 6 ( ^ ) ; (A15) 

[ -0 .573 , -0 .427 , - 0 .183 , +0.019, +0 .113] . 

The # = 0 value is simply — 2kF2/3. 
In the absence of a Hartree-Fock calculation for the 

ion, Hartree parameters may be used in Eq. (A3) and 
vq

(2) is taken equal to zero. 

APPENDIX B: THE FERMI SURFACE IN CALCIUM 

Calcium is face-centered cubic with unit cube edge 
of a = 10.5 a.u. Zone faces intersect the Fermi surface 
corresponding to lattice wave numbers of type 
[ l l l ] 2 x / a , and [200]27r/a. The OPW form factors to 
be associated with these faces are 0.003 and 0.039 Ry, 
respectively. If the (111) gap is, in fact, as small as 
this, magnetic breakdown24 will occur at high fields. 
(At the breakdown field3 oiH^irmcV^kp/efiEpq, which 
is 50 kG for Vq equal to 0.003 Ry and the other parame
ters taken for calcium, the probability of jumping the 
gap is 1/e.) Our calculation is not sufficiently precise 
to be sure even of the order of magnitude of this break
down field, but we should consider a high-field and a 
low-field Fermi surface. 

At low fields, both types of zone face are effective. 
Except for the change in connectivity of the surface, 
the distortion of the surface by the (111) face is 
negligible: The effect of the (200) faces are readily 
included by treating a two-by-two Hamiltonian matrix. 
In Fig. 4 is shown the resulting Fermi surface, as well 
as the free-electron surface for a divalent fee metal. 
Because of the smallness of the gap on the (111) faces, 
the second-band electron surface is essentially the same 

24 M. H. Cohen and L. Falicov, Phys. Rev. Letters 5, 544 (1960); 
7, 231 (1961). 
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FIG. 4. The calculated low-field 
Fermi surface in calcium; (a) and 
(c) are the first- and second- band 
surfaces in the one OPW, or nearly-
free-electron approximation; (b) is 
the first-band surface from our 
calculation; the second-band sur
face is essentially unchanged^/by 
our calculation. 

as that for free electrons. The main effect of the finite 
lattice potential on first-band hole surface is to open 
gaps in the thin sections of the free-electron surface. 
The resulting hole surface has the connectivity of the 
third-band electron surface in aluminum. The intro
duction of interaction with a second plane wave also 
shifts the Fermi energy by about a percent. If we 
correct for this shift, to obtain a surface of the correct 
volume, this reduces the sensitive cross section (f) 
described below by about 14%, and affects the others 
by smaller amounts. We have neglected this correction. 

We may list the sections of the surface which are 
most interesting from an experimental point of view. 
The corresponding estimated areas and de Haas-van 
Alphen periods are given in Table IV. 

(a) The minimum section of a first-band arm, cor
responding to orbits in a field in a [110] direction. 

(b) An orbit around the intersection of four arms at 
W, as viewed along a [100] direction. 

(c) An orbit around the intersection of four arms at 
W, as viewed along a [110] direction. 

(d) An orbit around the second-band disks. The 
minimum area is seen with fields along a [110] direction. 

(e) Another interesting section of the second-band 
disks arises with fields parallel to a [100] direction and 
has been computed by Berlincourt.25 

(f) The nearly circular region surrounded by four 
arms, seen with fields in the [100] direction. 

(g) An approximately square orbit around the outside 
of these arms and concentric with (f) as viewed along 
a [100] direction. 

In the high-field limit all of these disappear except 
(f) and (g), each of which has the same area as above, 
and no new extremal orbits appear for fields in the 
[100] direction. The Fermi surface then becomes the 
same as that for a monovalent, simple-cubic metal. 

Berlincourt25 observed de Haas-van Alphen oscilla
tions in calcium with a magnetic field parallel to [100] 
using fields pulsed to 200 kG. He found a period of 
0.59X10-7G-X, with an estimated error of 10%, and 

TABLE IV. Predicted sections of Fermi surface and 
De Haas-van Alphen periods for calcium. 

25 T. G. Berlincourt, in Proceedings of the Seventh International 
Conference on Low-Temperature Physics (University of Toronto 
Jress, Toronto, 1960). 

Section 

(a) 
(b)a 

(c) 
(d)* 
(e)8 

(f) 
(g) 

Field Area 
direction (a.u.) 

rnoi 
"100" 
"110] 
110 
l o o v 

ioou 

[iooJ 

0.0062 
0.035 
0.038 
0.054 
0.064 
0.09 
0.31 

Period 
(10-^ G"1) 

4.3 
0.76 
0.71 
0.50 
0.42 
0.30 
0.085 

a These orbits occur in the single-OPW approximation, and are not 
appreciably modified by the lattice potential. Single-OPW areas are listed 
here. 
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indication of a period shorter by a factor of about 8. 
The first does not match any of the periods given in 
Table IV for [100] fields very closely, but is of the 
order of (b), (e), and (f). Neither (b) nor (e) is very 
sensitive to the size of the form factors and we do not 
expect errors this large. We would be inclined to guess 
that the sensitive orbit (f) has been observed. The 
shorter period agrees nicely with (g) and with no other 
orbit. These are just the two orbits which remain for 
high fields in the [100] direction and suggests that at 

SYMMETRY arguments predict that only four types 
can exist for the anisotropy of the weak-field 

galvanomagnetic effects in cubic semiconductors.1 These 
are listed in Table I, together with the corresponding 
materials and their band shapes, in accordance with the 
results thus far established.2 The similarity of the 

MAGNETIC FIELD H 

SPECIMEN I H 

FIG. 1. Principle of the differential method to detect the 
anisotropy with a low-precision magnet. The merit is in the 
simultaneous observation of two competing responses within a 
small space. 

1 H.Miyazawa, in Proceedings of the International Conference on 
the Physics of Semiconductors, Exeter (The Institute of Physics and 
the Physical Society, London, 1962), p. 636. 

2 G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951); B. 
Abeles and S. Meiboom, ibid. 95, 31 (1954); M. Shibuya, ibid. 95, 
1385 (1954); C. Goldberg, E. N. Adams, and R. E. Davis, ibid. 
105, 865 (1957); J. G. Mavroides, and B. Lax, ibid. 107, 1530 

H A R R I S O N 

the 200 kG which he used, breakdown has become 
important. 

Condon and Marcus26 and Condon27 have studied 
the de Haas-van Alphen effect in fields up to 30 kG 
and find results consistent with the low-field surface, 
though quantitative comparison is not complete. 

26 T. H. Condon and T. A. Marcus, Bull. Am. Phys. Soc. 6, 145 
(1961). 

27 J. H. Condon (to be published). 

valence band of silicon and germanium might suggest 
that ^>-type silicon would belong to the third type, as is 
the case for ^-type germanium. Careful measurements of 
the weak-field magnetoresistance,3 however, have dis
closed that the anisotropy of the former above liquid-
nitrogen temperature is not of the third type and that 

SAMPLE R0 p0 >JH |AVH=VHail>-VH<OOI> 

KIII>-3R 2962 8.34 355 (mV) 
KOOD5LC 2955 8.45 350 l.5h 

VH/H=0.50I mV/K-QAUSS / 
I.Oh / 

Q5h J / 

HEJO -60 - 4 p c r -20 61 20 40 60 80 

f H (K-GAUSS) 
/ -Q5h 

/ ",,0r 

300° K 

FIG. 2. An experimental result observed by the differential 
method. The measurement was made with a Bitter-type air core 
solenoid generating 90-kG maximum field. The result proves that 
£ifmi»2?tf<ooi> at finite fields. 

(1957); W. M. Bullis, ibid. 109, 292 (1958); W. E. Krag, ibid. 
118,435(1960); H. Miyazawa and H. Maeda, in Proceedings of the 
International Conference on Semiconductor Physics, 1960 (Checho
slovakian Academy of Sciences, Prague, 1961), p. 169, and J. Phys. 
Soc. Japan 15, 1924 (1960). 

3 D . Long and J. Myers, Phys. Rev. 109, 1098 (1958). 
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Evidence for the (110) Swelling Constant Energy Surface for Heavy 
Holes in Silicon 

H. MIYAZAWA, K. SUZUKI, AND H. MAEDA 

Toshiba Central Research Laboratory, Kawasaki, Japan 
(Received 23 April 1963) 

A newly devised experimental technique has revealed that the puzzling weak-field anisotropy of the 
galvanomagnetic effects in ^-type silicon above 77°K belongs, according to our classification, to the last of 
the four possible types for cubic semiconductors. The strange behavior is ascribable to the growth of the 
(110) swelling energy contour for the heavy-hole band. A brief description is given of the calculation of the 
nonparabolicity with the recent band parameters and of the calculation of the conductivity tensor for a 
fictitious energy surface. 


